EC474 COMPUTER VISION 3-0-0-3 2016 Prerequisite: EC301 Digital Signal Processing Course objectives: 2016 • To review image processing techniques for computer vision • • • • To understand shape and region analysis • • • • To understand three-dimensional image analysis techniques and motion analysis • • • • To introduce methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome: The students will be able to: • • • • Perform shape analysis and boundary tracking techniques • • • To develop applications using computer vision techniques • • • • D Forsyth and J Ponce, Computer Vision, Fourth Edition, Academic Press, 2012. • • • • • To develop applications using computer vision echniques • • • • • •	COUR COD	RSE DE	COURSE NAME	L-T-P-C	YEAR INTRODU	OF CTION
Prerequisite: EC301 Digital Signal Processing Course objectives: • To review image processing techniques for computer vision • To understand shape and region analysis • To understand three-dimensional image analysis techniques and motion analysis • To study some applications of computer vision algorithms • To introduce methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome: The students will be able to: i. Implement fundamental image processing techniques required for computer vision iii. Implement motion related techniques iv: To develop applications using computer vision techniques iv: To develop applications using computer vision - A modern approach, Prentice Hall of India, 2002 References: 1. B K P Horn , Robot Vision, McGraw-Hill, 1986 2. D Forsyth and J Ponce, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Algorithms and Applic	EC4	74	COMPUTER VISION	3-0-0-3	2016	5
Course objectives: • To review image processing techniques for computer vision • To understand shape and region analysis • To understand three-dimensional image analysis techniques and motion analysis • To study some applications of computer vision algorithms • To introduce methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome: The students will be able to: i. i. Implement fundamental image processing techniques iii. Implement motion related techniques iii. Implement motions: Algorithms and Applications, Springer 2011 3. Simon J D Prin	Prerequi	isite: E0	C301 Digital Signal Processing			
 To review image processing techniques for computer vision To understand shape and region analysis To understand three-dimensional image analysis techniques and motion analysis To study some applications of computer vision algorithms To introduce methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome:	Course o	bjectiv	es:			
 To understand shape and region analysis To understand three-dimensional image analysis techniques and motion analysis To study some applications of computer vision algorithms To introduce methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome: The students will be able to: 	• T	o reviev	w image processing techniques for computer vision	TAN		
 To understand three-dimensional image analysis techniques and motion analysis To study some applications of computer vision algorithms To introduce methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome:	• T	o under	stand shape and region analysis	LAIV		
 To study some applications of computer vision algorithms To introduce methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome:	• T	o under	stand three-dimensional image analysis techniques	and motion an	alysis	
 To introduce methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome: The students will be able to: 	• T	o study	some applications of computer vision algorithms	AI		
Vision systems with emphasis on applications and problem solving Syllabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome: The students will be able to: i. Implement fundamental image processing techniques required for computer vision iii. Perform shape analysis and boundary tracking techniques iii. Implement motion related techniques iv. To develop applications using computer vision techniques Text Books: 1. B K P Horn, Robot Vision, McGraw-Hill,1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. 2. R. Szeliski, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Module Kend Seem. Example: Seem. See	• T	o introd	uce methods and concepts which will enable the st	tudent to imple	ment comput	er
Sylabus: Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome: The students will be able to: Implement fundamental image processing techniques required for computer vision Perform shape analysis and boundary tracking techniques Implement motion related techniques To develop applications using computer vision techniques Text Books: 1. B K P Horn, Robot Vision, McGraw-Hill, 1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 1. E R Davies, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Wodule Course content Hours Sem. Exam Marks Image spacesing techniques : filtering, thresholding 1 Mathematical morphology, Texture Binary shape analysis, connectedness, object labelling and counting Boundary descriptors Image: Springer Spr	vi	sion sy	stems with emphasis on applications and problem	solving		
Review of Image processing operations, Image formation models, Image processing and feature extraction, Motion Estimation, Shape representation and Object recognition. Expected outcome: The students will be able to: i. Implement fundamental image processing techniques required for computer vision ii. Perform shape analysis and boundary tracking techniques iii. Implement motion related techniques iv. To develop applications using computer vision techniques Text Books: 1. B K P Horn , Robot Vision, McGraw-Hill,1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Course Plan Module Review of image processing techniques : filtering, thresholding Mathematical morphology, Texture Binary shape analysis, connectedness, object labelling and counting Boundary descriptors I Monocular and binocular imaging system Course Plan Monocular and binocular imaging	Syllabus	:	OTTITEITOIT			
Expected outcome: The students will be able to: i. Implement fundamental image processing techniques required for computer vision ii. Perform shape analysis and boundary tracking techniques iii. Implement motion related techniques iv. To develop applications using computer vision techniques Text Books: 1. B K P Horn , Robot Vision, McGraw-Hill,1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. 2. R. Szeliski, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Course Plan Module Modus Image: Review of image processing techniques : filtering, thresholding 1 Mathematical morphology, Texture 1 Binary shape analysis, connectedness, object labelling and counting 2 Boundary descriptors	Review of extraction	of Imag n, <mark>Motic</mark>	ge processing operations, Image formation mod on Estimation, Shape representation and Object rec	els, Image pro cognition.	ocessing and	feature
The students will be able to: i. Implement fundamental image processing techniques required for computer vision ii. Perform shape analysis and boundary tracking techniques iii. Implement motion related techniques iv. To develop applications using computer vision techniques I. B K P Horn , Robot Vision, McGraw-Hill,1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Yeres, 2012. Course content Module Review of image processing techniques : filtering, thresholding 1 I Mathematical morphology, Texture 1 Binary shape analysis, connectedness, object labelling and counting 2 Boundary descriptors 1 II Monocular and binocular imaging system 2 Orthographic & Perspective Projection 2 15	Expected	l outco	me:			
 i. Implement fundamental image processing techniques required for computer vision ii. Perform shape analysis and boundary tracking techniques iii. Implement motion related techniques iv. To develop applications using computer vision techniques Text Books: B K P Horn , Robot Vision, McGraw-Hill,1986 D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. R. Szeliski, Computer & Machine Vision: Algorithms and Applications, Springer 2011 Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Module Review of image processing techniques : filtering, thresholding Mathematical morphology, Texture Binary shape analysis, connectedness, object labelling and counting Binary shape analysis, connectedness, object labelling and counting Monocular and binocular imaging system Orthographic & Perspective Projection If 	The stude	ents wil	l be able to:			
ii. Perform shape analysis and boundary tracking techniques iii. Implement motion related techniques iv. To develop applications using computer vision techniques Text Books: I. B K P Horn , Robot Vision, McGraw-Hill,1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Verse, 2012. Kendule Module Review of image processing techniques : filtering, thresholding 1 Mathematical morphology, Texture 1 Binary shape analysis, connectedness, object labelling and counting 2 Boundary descriptors 1 1 1 Moncular and binocular imaging system 2 Orthographic & Perspective Projection 2	i. In	npleme	nt fundamental image processing techniques requi	red for compute	er vision	
iii. Implement motion related techniques iv. To develop applications using computer vision techniques Text Books: 1. B K P Horn , Robot Vision, McGraw-Hill,1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Module Course Content Hours Plan Module Review of image processing techniques : filtering, thresholding 1 Mathematical morphology, Texture 1 Binary shape analysis, connectedness, object labelling and counting 2 Boundary descriptors 1 Moncular and binocular imaging system 2 Intermediate Projection 2 Determediate Projection 2 Intermediate Pro	ii. Pe	erform s	shape analysis and boundary tracking techniques			
To develop applications using computer vision techniques Text Books: 1. B K P Horn , Robot Vision, McGraw-Hill,1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Verses, 2012. Module Merications generation in the press of the press	iii. In	npleme	nt motion related techniques			
Text Books: 1. B K P Horn, Robot Vision, McGraw-Hill, 1986 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Verses, 2012. Kourse Plan Module Meview of image processing techniques : filtering, thresholding 1 Mathematical morphology, Texture 1 Binary shape analysis, connectedness, object labelling and counting 2 15 II Orthographic & Perspective Projection 2 15	iv. To	o develo	op applications using computer vision techniques			
1. B K P Holn, Robot Vision, McGraw-Hill, 1980 2. D Forsyth and J Ponce, Computer Vision - A modern approach, Prentice Hall of India, 2002 References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Course Plan Module Course content Hours End Sem. Exam Marks Mathematical morphology, Texture 1 15 Binary shape analysis, connectedness, object labelling and counting 2 15 II Orthographic & Perspective Projection 2 15	Text Boo	bks:	Dillow Debet Vision McCrow Hill 1086			
2. Droisy and Fronce, computer Vision - A modelin approach, Frence France Frances 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Verse Plan Module Course Plan Image: Review of image processing techniques : filtering, thresholding 1 Mathematical morphology, Texture 1 Binary shape analysis, connectedness, object labelling and counting 2 Boundary descriptors 1 II Orthographic & Perspective Projection 2 Image: Review of image processing techniques imaging system 1	1.		routh and I Ponce, Computer Vision A modern	approach D	antice Hall	of India
References: 1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Course Plan Module Course content Hours End Sem. Exam Marks Mathematical morphology, Texture 1 15 Binary shape analysis, connectedness, object labelling and counting 2 15 II Monocular and binocular imaging system 2 15	2.	2002	rsyur and Fronce, computer vision - A modern	approach, 11		n muia,
1. E R Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012. 2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Course Plan Module Course content Hours End Sem. Exam Marks Mathematical morphology, Texture 1 1 15 Binary shape analysis, connectedness, object labelling and counting 2 15 Monocular and binocular imaging system 2 15	Referenc	ces:				
2. R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Course Plan Module Course content Hours End Sem. Exam Marks Image processing techniques : filtering, thresholding 1 1 Mathematical morphology, Texture 1 1 Binary shape analysis, connectedness, object labelling and counting 2 1 Boundary descriptors 1 1 Image Processing techniques system 2 1	1. E	R Davi	es, Computer & Machine Vision, Fourth Edition, A	Academic Pres	s, 2012.	
3. Simon J D Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012. Course Plan Module Course content Hours End Sem. Exam Marks Image: Processing techniques : filtering, thresholding 1	2. R	. Szelisl	ki, Computer Vision: Algorithms and Applications	, Springer 201	1	
Press, 2012. Course Plan Module Course content Hours End Sem. Exam Marks Image processing techniques : filtering, thresholding 1<	3. Si	imon J	D Prince, Computer Vision: Models, Learning, and	nd Inference, C	Cambridge Ur	niversity
ModuleCourse Course CourseHoursEnd Sem. Exam MarksImage: Image processing techniques : filtering, thresholding11Mathematical morphology, Texture11Binary shape analysis, connectedness, object labelling and counting2Boundary descriptors11Monocular and binocular imaging system2Image processing techniques system2Image processing techniques system1Image processing techniques system1Image processing techniques system1Image processing techniques system1Image processing techniques system2Image processing techniques system2 <td>P1</td> <td>ress, 20</td> <td>12.</td> <td></td> <td></td> <td></td>	P1	ress, 20	12.			
ModuleCourse contentHoursEnd Sem. Exam MarksImage: Processing techniques : filtering, thresholding11Mathematical morphology, Texture11Binary shape analysis, connectedness, object labelling and counting215Boundary descriptors12Monocular and binocular imaging system215Orthographic & Perspective Projection215			Course Plan			
Image: HoursSem. Exam MarksImage: Image processing techniques : filtering, thresholding1Mathematical morphology, Texture1Binary shape analysis, connectedness, object labelling and counting2Boundary descriptors1Image: Image: Imag	Module		Course content			End
Image: Image processing techniques : filtering, thresholding1Image processing techniques : filtering, thresholding2Image processing techniques : filtering, thresholding2 <t< td=""><td></td><td></td><td></td><td></td><td>Hours</td><td>Sem.</td></t<>					Hours	Sem.
Image processing techniques : filtering, thresholding1Mathematical morphology, Texture1Binary shape analysis, connectedness, object labelling and counting2Boundary descriptors1Monocular and binocular imaging system2Orthographic & Perspective Projection2Image description1						Exam Marks
IMathematical morphology, Texture115Binary shape analysis, connectedness, object labelling and counting21Boundary descriptors11IIMonocular and binocular imaging system2Orthographic & Perspective Projection215		Review	w of image processing techniques : filtering, thresh	olding	1	
Binary shape analysis, connectedness, object labelling and counting 2 Boundary descriptors 1 Monocular and binocular imaging system 2 Orthographic & Perspective Projection 2 In 15	т	Mathe	matical morphology, Texture		1	15
Boundary descriptors 1 Monocular and binocular imaging system 2 Orthographic & Perspective Projection 2 II Image: Construction	1	Binary	/ shape analysis, connectedness, object labelling ar	nd counting	2	15
IIMonocular and binocular imaging system2Orthographic & Perspective Projection215		Bound	lary descriptors		1	
II Orthographic & Perspective Projection 2 15		Mono	cular and binocular imaging system		2	
	п	Orthog	graphic & Perspective Projection		2	15
Camera models 2		Camer	a models		2	

	Camera Calibration, Stereo vision: introduction; concept of disparity and its relationship with depth	3	
	FIRST INTERNAL EXAM		
	Image Processing for Feature Detection and Image Synthesis, Edge detection	1	
III	Corner detection, Harris corner detection algorithm, Line and curve detection, Hough transform	3	15
	SIFT operator, Mosaics, snakes	2	
	Shape from X - Shape from shading, Photometric stereo, Texture, Occluding contour detection.	3	
IV	Motion Analysis- Regularization theory,Optical Flow: brightness constancy equation, aperture problem, Horn-Shunck method, Lucas- Kanade method	4	15
	Structure from motion.	2	
	SECOND INTERNAL EXAM		
	Object recognition: Hough transforms and other simple object recognition methods	3	
V	Shape correspondence and shape matching, Principal Component Analysis	3	20
	Shape priors for recognition	1	
	Application: Photo album, Face detection, Face recognition, Eigen faces, Active appearance and 3D shape models of faces	3	•
VI	Application: In-vehicle vision system: locating roadway, road markings, identifying road signs, locating pedestrians	3	20
	END SEMESTER EXAM		

Question Paper Pattern (End semester exam)

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 70% for theory and 30% for logical/numerical problems, derivation and proof.

14

COURSE			YEAR OF
CODE	COURSE NAME	L-T-P-C	INTRODUCTION
	MIXED SIGNAL CIRCUIT		
EC462	DESIGN	3-0-0 -3	2016
D			

Prerequisite: EC 304 VLSI, EC308 Embedded Systems

Course objectives:

- To give the knowledge about various analog and digital CMOS circuits
- To impart the skill in analysis and design of analog and digital CMOS circuits.

Syllabus:

CMOS Amplifiers: CS,CG,CD stages, Cascoded stages, Folded cascode Amplifier, MOS Current Mirror, MOSFET cascode current mirror, Differential Amplifiers, MOS telescopic cascode amplifier,CMOS OP AMPS, Design of classical Two Stage OP AMP, Comparator, Band gap References, Phase Locked Loop, Dynamic analog circuits, Data Converters, Switched Capacitor Circuits, Data Converters- Specifications, DAC, ADC Architecture

Expected outcome:

The students will be able to design and analyse various analog and digital CMOS circuits.

Text Books:

- 1. Phillip E. Allen, Douglas R. Holbery, CMOS Analog Circuit Design, Oxford, 2004.
- 2. Razavi B., Fundamentals of Microelectronics, Wiley student Edition2014.

References:

- 1. Baker, Li, Boyce, CMOS: Circuits Design, Layout and Simulation, Prentice Hall India, 2000
- 2. Razavi B., Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.

	Co <mark>ur</mark> se Plan			
Module	Course contents	Hours	End Sem. Exam Marks	
I	CMOS Amplifiers- Common Source with diode connected loads and current source load, CS stage with source degeneration, CG stage and Source Follower (Only Voltage Gain and Output impedance of circuits)	4	15%	
	Cascoded stages - Cascoded amplifier, Cascoded amplifier with cascoded loads , Folded cascode Amplifier	4		
II	MOS Current Mirror- Basic circuit, PMOS and NMOS current mirrors Current mirror copying circuits, MOSFET cascode current mirror circuits	3	15%	
	Differential Amplifiers- Differential Amplifier with MOS current source Load, with cascaded load and with current mirror load, MOS telescopic cascode amplifier. (Only Voltage Gain and Output impedance of circuits)	4		
	FIRST INTERNAL EXAM			
III	CMOS OP AMPS- Two Stage Operational Amplifiers - Frequency compensation of OPAMPS - miller compensation,	3	15%	

	Design of classical Two Stage OP AMP		
	Comparator- Characterization of a comparator-static and dynamic, A Two stage open loop comparator (analysis not required)	3	
IV	Band gap References- Supply Independent Biasing, Temperature independent references –band gap reference	5	1507
IV	Phase Locked Loop – Simple PLL ,Basic PLL Topology, Charge Pump PLL, Basic Charge Pump PLL	3	15%
	SECOND INTERNAL EXAM		
N7	Dynamic analog circuits – charge injection and capacitive feed through in MOS switch, Reduction technique	3	20%
•	Switched Capacitor Circuits- sample and hold circuits, Switched Capacitor Integrator, Ladder filters	3	20 70
VI	Data Converters- DAC Specifications-DNL, INL, latency, SNR, Dynamic Range ADC Specifications-Quantization error, Aliasing, SNR, Aperture error	4	20%
	DAC Architecture - Resistor String, Charge Scaling and Pipeline types.ADC Architecture- Flash and Pipe line types	3	
END SEMESTER EXAM			

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 60% for theory and 40% for logical/numerical problems, derivation and proof.

COURS	SE COURSE NAME	L-T-P-C	YEAR INTRODI	OF ICTION	
EC464	4 LOW POWER VLSI	3-0-0 -3	201	6	
Prerequi	site: EC 304 VLSI, EC308 Embedded Systems			•	
Course o	bjectives: To identify the power dissipation mechanisms in var To familiarize suitable techniques to reduce power of	rious MOS 1 lissipation	ogic styles		
Syllabus: Physics c Circuit te clocked c	f Power dissipation in MOSFET devices, Sources chniques for leakage power reduction, Design and ircuit design style, Adiabatic switching.	of power d test of low	issipation in voltage CM	CMOS, OS, Non	
Expected	outcome:	V			
The stude i. Id ii. Un iii. Un iv. Ro ten v. Id	nts will be able to: entify the sources of power dissipation in digital IC synderstand the impact of power on system performance inderstand leakage sources and reduction techniques ecognise advanced issues in VLSI systems, specific to chnologies entify the mechanisms of power dissipation in CMOS	vstems. and reliabil the deep-su	ity bmicron sili	con	
v. Iu	entity the mechanisms of power dissipation in Civios	megrateu c	incuits		
1. Gr 2. Ki 20 Reference 1. Ai 2. Ai 2. Ai 3. Cl 4. Ki	 Text Books: Gray Yeap, Practical low power digital VLSI design, Springer, 1998 Kaushik Roy, Sharat C Prasad, Low power CMOS VLSI circuit design, Wiley India, 2000 References: Abdellatif Bellaouar, Mohamed I Elmasry, Low power digital VLSI design, Kluwer Academic, 1995 Anatha P Chandrakasan, Robert W Brodersen, Low power digital CMOS Design, Kluwer Academic, 1995 Christian Piguet, Low power CMOS circuits, Taylor & Francis, 2006 Kiat Seng Yeo, Kaushik Roy, Low voltage, low power VLSI sub systems, Tata McGraw 				
	Course Plan				
Module	Course contents	1	Hours	End Sem. Exam Marks	
	Physics of Power dissipation in MOSFET devices MIS structure, Need for low power circuit design	6	2		
	Threshold voltage, body effects,		1		
I	Short channel effects-surface scattering, punch three saturation, impact ionization Hot electron effects, drain induced barrier lowering,	ough, veloci narrow wid	ity 2 Ith 2	15%	
	effects Sources of power dissipation in CMOS-Swi dissipation	tching pow	ver 2		
II	Short circuit power dissipation, glitching power dissi	pation	2	15%	
	Leakage power dissipation, Transistor leakage m	echanisms	of 3	1	

	deep submicron transistors		
	FIRST INTERNAL EXAM		
	Circuit techniques for leakage power reduction – standby leakage control using transistor stacks	2	
	multiple V _{th} techniques, Dynamic V _{th} techniques	2	
III	supply voltage scaling techniques, Deep submicron devices design issues	2	15%
	Minimizing short channel effect	2	
IV	Design and test of low voltage CMOS – Circuit design style- clocked design style- Basic concept	2	
	Domino logic (domino NAND gate)	1	15%
	Differential Current Switch Logic.	2	
SECOND INTERNAL EXAM			
	Non clocked circuit design style-fully complementary logic	2	
V	NMOS and pseudo –NMOS logic	2	20%
•	differential cascade voltage switch logic(DCVS),	2	20 /0
	pass transistor logic	2	
	Adiabatic switching – Adiabatic charging, adiabatic amplification	2	
VI	One stage and two stage adiabatic buffer	2	20%
	fully adiabatic system	1	
	Adiabatic logic gates, pulsed power supplies	2	
	END SEMESTER EXAM		

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 60% for theory and 40% for logical/numerical problems, derivation and proof.

COUR	RSE			YEAR	OF	
COD	DE	COURSE NAME	L-T-P-C	NTRODU	CTION	
EC4	66 [CYBER SECURITY	3-0-0 -3	2016	1	
Prerequi	Frerequisite: EC407 Computer Communication					
Course o	bjective	S:	1 1 '			
• 1	o familia	arize various types of cyber-attacks	s and cyber-crimes.			
	o give ar	n overview of the cyber laws	ana attaalm			
	• study t	ne defensive techniques against the	ese allacks			
Vulnere	• hility oo	anning tools for soonning Nature	le defense toole. Einewalle	and Interval	n Datastian	
V uillera Systems	Virtual	Private Networks Scanning for	web vulnerabilities tools	Cyber crim	and law	
cyber cr	ime inve	estigation	web vulnerabilities tools,	Cyber enni	ies and law,	
Export						
The stud	ents wi	le: Il be able to understand cyber-att	acks types of cybercrime	s cyher lav	vs and also	
how to pr	otect the	em self and ultimately the entire In	ternet community from su	ch attacks	vs and also	
Text Boo	ke.					
1. M	like Sher	ma . Anti-Hacker Tool Kit. Mc Gra	aw Hill			
2. N	ina God	bole and Sunit Belpure, Cyber S	ecurity Understanding Cy	ber Crimes	Computer	
Fe	orensics	and Legal Perspectives, Wiley	, ,		, I	
Refere	ences:					
1. A	chyut S.	Godbole Data Communication and	d Networking,2e, McGrav	v –Hill Edu	cation New	
D	elhi,201	1			a	
2. Fo	orouzan,	Data Communication and Net	tworking (Global Edition	n) 5/e, Mo	Graw Hill	
	orouzan '	India, 2015. TCP/IP Protocol Suite de McGray	v Hill Education India 20	10		
5. 10	orouzan,	Course	Plan	10		
Module		Course conten	its		End Sem.	
				Hours	Exam	
					Marks	
I	Introd	uction to Vulnerability Scanning	g Onen Dert / Cerry			
	Uvervie	ew of vulnerability scanning,	, Open Port / Servi	$\frac{ce}{tv}$ 7	15%	
	Probe	Vulnerability Examples OpenVAS	S Metasploit	l y		
II	Netwoi	rk Vulnerability Scanning	s, measpien.			
	Networ	ks Vulnerability Scanning - Netca	at, Socat, understanding Po	ort		
	and S	ervices tools - Datapipe, Fr	pipe, WinRelay, Netwo	rk 🚽	1507	
	Reconn	naissance – Nmap, THC-Amap a	and System tools, Netwo	rk /	15%	
	Sniffers	s and Injection tools - Tcpdump	and Windump, Wiresha	·k,		
	Etterca	p, Hping, Kismet				
	1	FIRST INTERNAL	EXAM			
	Networ	rk Defense tools				
	Firewal	Ils and Packet Filters: Firewall	Basics, Packet Filter	VS		
III	Firewal	II, HOW A FIREWAIL PROTECTS A NETW	Ork, Packet Unaracteristic		15%	
	$(N\Delta T)$	and Port Forwarding the basic of	of Virtual Private Network	5		
	Linux	Firewall, Windows Firewall. Sn	ort: Introduction Detecti	on		

IV	Web Application Tools Scanning for web vulnerabilities tools: Nikto, W3af, HTTP utilities - Curl, OpenSSL and Stunnel, Application Inspection tools – Zed Attack Proxy, Sqlmap. DVWA, Webgoat, Password Cracking and Brute-Force Tools – John the Ripper, L0htcrack, Pwdump, HTC- Hydra	6	15%
	SECOND INTERNAL EXAM		
V	Introduction to Cyber Crime and law Cyber Crimes, Types of Cybercrime, Hacking, Attack vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems Associated with Computer Crime, Introduction to Incident Response, Digital Forensics, Computer Language, Network Language, Realms of the Cyber world, A Brief History of the Internet, Recognizing and Defining Computer Crime, Contemporary Crimes, Computers as Targets, Contaminants and Destruction of Data, Indian IT ACT 2000.	8	20%
VI	Introduction to Cyber Crime Investigation Firewalls and Packet Filters, password Cracking, Keyloggers and Spyware, Virus and Warms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Attack on wireless Networks	6	20%
	END SEMESTER EXAM		

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 100% for theory.

COURS CODE	E COURSE NAME	L-T-P-C	YEAI INTRODI	R OF UCTION		
EC468	SECURE COMMUNICATION	3-0-0 -3	201	16		
Prerequisit	e: EC407 COMPUTER COMMUNICATION			-		
Course obj	ectives:					
•To	impart the students about the theory and technolo	gy behind the secure	communi	cation.		
Syllabus:	on Socurity Socurity Cools Types of Attacks I	Modulor orithmatics	Groups D	na Fielde		
The Euclide	ean algorithm Finite fields of the form GF(n) Po	lynomial arithmetic.	Svmmetr	ic Cinhers		
Symmetric	Cipher Model. Substitution Techniques. Transp	osition techniques.	Block Cir	bhers. Data		
encryption	Standards, Differential and Linear Crypt analysis	Advanced Encryptic	n standard	l, The AES		
Cipher, Pub	lic key cryptosystem, RSA algorithm, Intruders, I	Password manageme	nt			
Expected o	utcome:					
The student	will be	1 1				
i. 1	Exposed to the different approaches that handle se	ecurity and the algori	thms in us	e for		
	naintaining data integrity and authenticity.	of convity factures	dagion or :	their		
11.	mplementation	s of security reatures	uesign and	ı metr		
Text Books						
1. Beh	 rouz A. Forouzan . Cryptography and Network se	curity Tata McGraw	-Hill, 2008	3		
2. Will	iam Stallings, Cryptography and Network securit	y: principles and pra	ctice", 2nd	Edition,		
Prer	tice Hall of India, New Delhi, 2002			ŕ		
References						
1. Dav	id S. Dummit & Richard M Foote <mark>,</mark> Abstract Algeb	bra, 2nd Edition, Wil	ey India P	vt. Ltd.,		
200	3. A Stimmer Constant her Theorem 1 Desti			Duran		
2. Dou	gias A. Sunson, Cryptography, Theory and Practi	ice, 2/e, Chapman &	Hall, CKC	Press		
3. Law	rence C. Washington, Elliptic Curves: Theory and	d Cryptography, Cha	pman & H	all. CRC		
Pres	s Company, Washington, 2008.	a eryptography, ena				
4. N. F	Koeblitz: A course in Number theory and Cryptog	raphy, 2008				
5. Tho	mas Koshy: Elementary Number Theory with App	plications, 2/e, Acad	emic Press	, 2007		
6. Tya	gi and Yaday, Cryptography and network security	y, Dhanpatrai, 2012				
	Course Dian					
				Frd		
				Ellu Sem		
Module	Course contents		Hours	Exam		
				Marks		
	Introduction on security, security goals and type	s of attacks: Passive				
Ι	attack, active attack, attacks on confidentiality,	attacks on integrity	5	15%		
	and availability, Security services and mechanism	ns.				
	Modular arithmetic: Groups. Ring. Fields. The Euclidean algorithm.					
II	Finite fields of the form GF(p)	ζ,	4	15%		
	Polynomial arithmetic: Finite fields of the form C	GF (2n).	4			
	FIRST INTERNAL EXAM					
III	Symmetric Ciphers, Symmetric Cipher Model		3	15%		

	Substitution Techniques, Caesar Cipher, Mono alphabetic Cipher, Play fair cipher, Hill cipher, Poly alphabetic Cipher, one time pad	4	
	Transposition techniques ,Block Ciphers, Data encryption Standards, DES Encryption, DES decryption	3	
IV	Differential and Linear Crypt analysis Advanced Encryption standard	2	15%
	The AES Cipher, substitute bytes transformation, Shift row transformation, Mix Column transformation.	2	
	SECOND INTERNAL EXAM		
V	Public key cryptosystem, Application for Public key cryptosystem requirements	2	20.07-
	RSA algorithm, Key management, Distribution of public key, public key certificates, Distribution of secret keys.	5	20 70
VI	Intruders: Intrusion techniques, Intrusion detection, Statistical anomaly detection, Rule based intrusion detection, Distributed intrusion detection, Honey pot, Intrusion detection exchange format.	5	20%
	Password management: Password protection, password selection strategies.	2	
END SEMESTER EXAM			

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50% for theory and 50% for logical/numerical problems, derivation and proof.

COURSE	COURSE NAME	I_T_P_C	YEA INTROI	ROF			
CODE	INTEGRATED OPTICS & PHOTONIC		INTROL				
EC472	SYSTEMS	3-0-0 -3	20)16			
Prerequisit	Prerequisite: EC303 Applied Electromagnetic Theory, EC405 Optical Communication						
Course objectives:							
• To disc	uss basic goals, principles and techniques of integrated	optical d	evices and	l photonic			
systems	systems						
• To expl system	ain operation and integration of various optoelectronic d	evices in	an integra	ted optical			
• To stud	ly about various components like optical waveguides, o	optical con	uplers, de	sign tools,			
fabricat	ion techniques, and the applications of optical integrated circ	cuits.	1	0			
• To intro	duce some of the current state-of-the-art devices and system	ıs.					
Syllabus:	Review of Electromagnetics: Maxwell's equations, opt	ical wave	guides an	d devices,			
Waveguide	Fabrication Techniques, Electro-Optic Waveguides, Polyr	ner Waveg	guide Devi	ce, Losses			
in optical w	ave guide, Wave guide input and output couplers, coupled i	mode theor	ry, Light P	ropagation			
in Wavegu	ides, FFT-BPM, FD-BPM, Electro-Optic Modulators: Ty	pes, Integ	rated sem	iconductor			
laser, integr	rated semiconductor optical amplifier, integrated optical de	etectors, ap	pplications	of optical			
integrated of	circuits, devices and systems for telecommunications, mi	crowave c	carrier gen	eration by			
optical tech	niques, photonic crystals, nanophotonic device.						
Expected o	utcome:						
i Dev	is will have an in depin knowledge of	onio quetar	na inaludi	ng Ontigel			
I. Dev	a guidas, antical components of integrated optics and phot	onic syster	ns includi	ng Optical			
ii Ligh	t propagation in waveguides	`					
iii The	fabrication process of Optical Integrated devices						
iv. App	lications of Optical Integrated devices						
v. Nan	o photonic devices						
Text Books		-					
1. Lifa	nte, Integrated Photonics: Fundamentals, John Wiley 2003						
2. Rob	ert Hunsperger, Integrated optics : Theory and technology 6/	e Springer/	, 2009				
References							
1. H.	Nishihara M Haruna and T Suhara Optical Integ	prated Cir	cuits. Mo	Graw-Hill			
Prof	Sessional, 1989.	5	,				
2. Keid	colizuka, Elements of photonics, John Wiley, 2002.						
3. Pap	pannareddy, Introduction to light wave systems, Artech Hous	se,1995					
RELATED	LINKS						
Website of IEEE photonics society: <u>www.ieee.org/photonics.</u>							
	Course Plan						
				End			
Module	Course content (42hrs)		Hours	Sem.			
Liudule				Exam			
	Marks						
	Review of Electromagnetics, Maxwell's equations - Wave	equation	3				
T	Analysis of optical waveguides and devices- Planar wa	aveguides,		15%			
	chanel waveguides, graded index waveguides.		4	15 /0			

II	Waveguide Fabrication Techniques -substrate materials for optical IC, Epitaxially Grown Waveguides- Electro-Optic Waveguides Types of Polymers-Polymer Waveguide Devices, Optical Fiber Waveguide Devices	4	15%
FIRST INTERNAL EXAM			
III	Losses in optical wave guide, measurement of losses. Wave guide input and output couplers, types of couplers, coupling between wave guides,	4	15%
	Optical Fiber Couplers and Splitters, coupled mode theory	3	
IV	Light Propagation in Waveguides: The Beam Propagation Method- Fresnel Equation - Fast Fourier Transform Method (FFT-BPM) - Solution based on discrete fourier transform - Method Based on Finite Differences (FD-BPM), Boundary Conditions	7	15%
SECOND INTERNAL EXAM			
V	Electro-Optic Modulators - Basic Operating Characteristics- The Electro-Optic Effect,Mach-Zehnder Modulator, acousto-optic modulator,	4	20%
	Integrated semiconductor laser, integrated semiconductor optical amplifier, integrated optical detectors, structures.	3	
VI	Applications of Optical Integrated Circuits-Spectrum Analyser- Temperature and High Voltage Sensors,	3	20%
	Devices and Systems for Telecommunications- Microwave Carrier Generation by Optical Techniques, - Photonic Crystals- Nanophotonic Device.	4	
END SEMESTER EXAM			

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50% for theory and 50% for logical/numerical problems, derivation and proof.

2014